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Fuel Economy and CO2 Emissions 
Downsizing, Downspeeding, GTDI, Friction 
Reduction, Combustion Optimization, etc. 

 

Fuels 
Increased Share of Biofuels (e.g., Ethanol 
(Corn, Algae, Cellulosic), Biodiesel, CNG, etc.) 

 

Reliability and Affordability 
TCO for Consumer 

 

Emissions 
SULEV Average w/ Stoichiometric and 
(Stratified) Lean-Burn Combustion Systems 
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U.S. – Passenger Cars and Light Trucks (GVW < 6,000lbs) 

Source: Delphi, FEV Research 
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LEV II LEV III – Phase In 

Durability Increase to 150k mi 

+ 3 new low emission categories 
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Powertrain Control and Optimization for Future Fuel Efficiency 

U.S. Emissions, FE and CO2 Legislation 
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Example: 
 

Three-Cylinder GTDI 
 

• Best in class BSFC 

• Variable valve lift 

• Friction optimized 

• State-of-the-art combustion 

• Optimized air and exhaust  

     management 

norm. to calor. val.=42.5 MJ/kg

- SI engines
- Production state
- Model year > 1997
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Gasoline Engines 



© by FEV – all rights reserved. Confidential – no passing on to third parties 7 

eccentric lever 
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Working Principle: 

support piston 

(gas forces) 

Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Variable Compression Ratio (VCR) 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Variable Compression Ratio (VCR) 
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Fuel consumption simulation
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Vehicle CO2 emissions can be reduced by ~ 3 – 5 % with high octane fuels and 

adapted engines with increased compression ratio  

Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – VCR and RON Potential 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Combustion System Development (CMD Process) 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Closed Loop Combustion Control (CLCC) 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Closed Loop Combustion Control (CLCC) 

US06 - Combustion control effect on engine out  

emissions
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FTP75 and US06 are more wide spread compared to NEDC. 

The WLTP is closer to US cycles. 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Standard Test Cycles vs. Real World 

Real  

World  

Driving? 
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Vehicle Emission Testing: FTP 75 C/H, Exhaust Temperatures
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Vehicle Emission Testing: FTP 75 C/H, Exhaust Temperatures
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – FTP-75 Exhaust Gas Temperatures (Gasoline) 



© by FEV – all rights reserved. Confidential – no passing on to third parties 15 

2.3L PFI, T/C - Tier 2, Bin 5 / LEV-II ULEV
3.0L Stratified Lean - Euro 4
2.4L GDI, N/A - Tier 2, Bin 5 / LEV-II ULEV
2.0L GTDI, T/C - Tier 2, Bin 5 / LEV-II ULEV
1.8L PFI, N/A - Tier 2, Bin 5 / LEV-II ULEV
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Close-Coupled Catalyst Temperatures (Midbed)

 3.0L Stratified Lean CCC (front bank)
 2.4L GDI, N/A
 2.0L GTDI, T/C
 2.3L PFI, T/C CCC Brick 1     
 1.8L PFI, N/A                  

Vehicle Cold Start Testing: FTP 75 C/H, 25º C

Dotted - Inlet
Solid - Midbed

2007 2.3L PFI, T/C - CCC+UBC
2008 3.0L Stratified Lean - CCC+UBC
2011 2.4L GDI, N/A - UBC Only
2011 2.0L GTDI, T/C - UBC Only
2012 1.8L PFI, N/A  - UBC Only

Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Cold Start Exhaust Gas Temperatures (Gasoline) 

Factor 10 !!! 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Lambda Control (Gasoline) 

 

Lambda Control Conclusion 

 Lambda controller typically consists 

of a feed forward controller 

combined with a feedback loop 

control principle 

 As the closed loop part is driven by 

deviation, an error has to occur 

before corrective measures are 

taken 

 The integrated absolute deviation 

between target lambda and actual 

lambda shows performance of the 

lambda controller, ideal this would 

be zero 

 Better open loop control could 

reduce the CO2 emissions 

 

 S
p

e
e
d

 [
k
m

/h
] 

  
  

  
 

0

25

50

75

100

time [s]

0 100 200 300 400 500 600

In
te

g
ra

te
d

 l
a
m

b
d

a
 d

if
f.

 [
-]

0
75

150
225
300
375
450
525
600
675
750
825

la
m

b
d

a
 [

-]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

time [s]

0 50 100 150 200 250 300 350 400 450 500 550

la
m

b
d

a
 [

-]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

time [s]

340 350 360 370

 actual lambda
 target lambda



© by FEV – all rights reserved. Confidential – no passing on to third parties 17 

Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Thermal Management Options (Gasoline) 
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… 
Battery Electric 

Vehicles 

Micro 

Hybrid 

Mild Hybrid Full Hybrid Plug-In Hybrid 

Hybrid Electric Vehicles 

Gear Box 

Fuel Tank 

Conventional 

Vehicles 

Transmission Impact 

Increasing electrical power 

Start-Stop & Intelligent Energy Management 

+ Kinetic Energy Recovery & Boosting 

+ Electric Drive 

+ Plug-In/REX 

Complexity Transmission 
Complexity ICE 

Downsizing 

Diesel and 

Gasoline 

NA Engine, Atkinson Battery size/price 
CO2-Emissions 

Gasoline Atkinson Gasoline NA 

Battery 

Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends - Hybridization 
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Introduction to Waste-Heat Recovery Technologies 

 Thermoelectric 

Generator (TEG) 
Turbocompound 

Organic Rankine 

Cycle (ORC) 

 The Rankine Cycle 

is a thermodynamic 

cycle that converts 

heat into work 

 The heat is 

supplied externally 

to a closed loop, 

which uses water or 

another fluid as 

working fluid.  

 A turbine recovers 

energy from the 

exhaust gas 

 Three main forms: 

Mechanical 

Turbocompound, 

Electric 

turbocharger, 

Turbogenerator 

 Temperature 

difference between 

the hot and cold 

surfaces of the 

thermoelectric 

module(s) 

generates electricity 

using the Seebeck 

Effect 

Powertrain Control and Optimization for Future Fuel Efficiency 

Development Trends – Waste Heat Recovery 
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Powertrain Control and Optimization for Future Fuel Efficiency 

Potential of Vehicle Connectivity 

Potential Scenario and Benefits: 

 Establish intelligent connection unit/service (iCU/iCS) 

 Cloud services for different applications 

 Collection of data from various vehicles 

(swarm intelligence)  predictive behavior 

 Intelligent algorithms to combine different data 

sources incl. potential updates over V2X 

 Added value for driver, infrastructure and society 
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• Significant improvement of fuel economy and emissions based on legislation 

are impetuous yet mandatory. 

• Engine technologies in combination with advanced controls in the field of 

engines, transmissions, aftertreatment, hybridization, thermal management, 

etc., offer significant potential for improvement beyond the current state-of-the-

art allowing to meet the legislated targets for 2025. 

• In addition, vehicle connectivity provides additional potential which, when 

properly applied, further improves vehicle fuel economy while simultaneously 

improving driving comfort and vehicle/passenger safety. 

• More work in the area of powertrain and vehicle connectivity is required to not 

only achieve improvement in their corresponding fields but also to connect the 

two with each other allowing to maximize the gain in overall vehicle fuel 

economy. 


